How Chemistry Determines Machinability- Manganese Sulfides

Flank wear is the “normally expected” failure mode for tools to fail when machining steels.

The volume fraction of Manganese Sulfides is a determinant of the tool’s wear rate. “The wear rate of high speed steel tools decreases rapidly up to about one percent volume fraction of MnS and then levels off to a constant wear rate as the volume fraction is increased.“-Roger Joseph and V.A.Tipnis, The Influence of Non-Metallic  Inclusions on the Machinability of Free- Machining Steels.

Manganese and Sulfur have a powerful effect in reducing flank wear on HSS tools

Manganese and Sulfur have a powerful effect in reducing flank wear on HSS tools

As sulfur rises beyond 1% volume fraction, surface finish improves, chips formed are smaller with less radius of curvature, and the friction force between cutting tool and chip decreases due to lower contact area.

Manganese sulfides are a separate internal phase.

Manganese sulfides are a separate internal phase.

How does Manganese Sulfide improve the machinability?

  • The MnS inclusions act as “stress raisers” in the shear zone to initiate microcracks that subsequently lead to fracture of the chip;
  • MnS inclusions  also deposit on the  wear surfaces of the cutting tool as “Built Up Edge (BUE).”
  • BUE reduces friction between the tool and the material being machined. This contributes to lower cutting temperatures.
  • BUE mechanically separates or insulates the tool edge from contact with work material and resulting heat transfer.

This is why resulfurized steels in the 11XX and 12XX series can be cut at much higher surface footage than steels with lower Manganese and Sulfur contents.

More info about Manganese in steel HERE

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s