6 Reasons Steel is Vacuum Treated

May 7, 2015

 Vacuum treated (vacuum degassed) steel is used for  critical applications that require steel with an exceptionally high degree of structural uniformity, internal soundness, and other characteristics which may be impaired by the effects of uncontrolled amounts of dissolved gases. Vacuum degassing treatments, along with various deoxidation practices are specified to control the amounts of dissolved gases in the steel. This post describes 6 benefits of vacuum treatment of steel.

 Liquid steel after treatment in a Siemens RH degassing plant achieves improved properties.

Liquid steel after treatment in a Siemens RH degassing plant achieves improved properties.

Vacuum treatment of molten steel

  • Reduces Hydrogen content. This reduces the tendency of steel to “flake” or become “embrittled.”
  • Reduces Oxygen content. This makes it easier for the steel to conform to restrictive microcleanliness requirements.
  • Improves the recovery and uniformity of distribution of alloying elements and other additives.
  • Helps control the composition of the steel closer than without vacuum treatment.
  • Results in higher and more uniform transverse ductility, improved fatigue resistance, and improved high temperature performance.
  • Can be used to achieve exceptionally low carbon content that are otherwise unobtainable by conventional means.

What are some situations where vacuum treatment is employed?

  • Large forgings and large cross sections where hydrogen would otherwise remain and contribute to flaking and embrittlement.
  • Bearings where uniformity throughout the section is important for critical performance.
  • Inverted delta, human critical safety applications where steel toughness and performance place high demands on the steels properties in all directions.

The removal of Oxygen by degassing  is a challenge for the steelmaker, because this element is extremely reactive- it can exist in the steel in many forms, such as free oxygen, dissolved in the melt as a soluble nonmetallic oxide, can combine with carbon to form gaseous oxides, and it can exist as complex oxides in the accompanying slags and refractories in the process.

In post will describe some steel deoxidation  practices and the types of vacuum degassing that are used in the North American steel Industry

Siemens Vacuum Degasser Photo

March 2015 Business Trends- In Like a Lion!

April 27, 2015

With 84 companies responding, the PMPA Business Trends Index in March roared in from February’s 122 to a seasonally correct but record breaking 138. We don’t expect to use Santa references in our professional writing in March, but based on that strong 138 showing we “checked our list twice.” No anomalous entries. Nobody keying in an extra digit in sales. Ten shops reported sales increases of 40% or more.

New Record!

New Record!

At 138, our index is 7 points above our October 2014 record of 131, a five percent (5%) increase in reported sales by our respondents. Adding to the credibility of this “Lion Market” indicator, you will find our article in the May issue of Production Machining “Prosperity In 2015: If You Dare” that reviews the very positive economic forecast by Brian Beaulieu of ITR given at our Management Update meeting.

Also corroborating our report is Steve Kline Jr.’s March Gardner Business Index Report:

“With a reading of 54.3, the Gardner Business Index showed that the production machining industry expanded for the second month in a row and at its fastest rate since June last year. The industry clearly has been trending up since November. The industry has expanded 3 of the previous 4 months… New orders grew for the third time in 4 months. Growth in new orders has been quite strong the previous 2 months. Production increased for the 15th consecutive month. The index has been on a significant uptrend since December, and it is at its highest level since June 2014.”

Bulls? Bears?


Nope! In like a LION. Do you dare to manage for prosperity in 2015?

 March 2015 PMPA Business Trends Report

Ra Is Different Than Rz

April 3, 2015

The methodology of measurement and what is measured are quite different. this is critical to understand if  you will not be paid for your parts because the Ra you measured is not in fact the Rz surface profile that customer specified.

Ra is calculated by an algorithm that measures the average length between the peaks and valleys and the deviation from the mean line on the entire surface within the sampling length. Ra averages all peaks and valleys of the roughness profile and then neutralizes the few outlying points so that the extreme points have no significant impact on the final results.

Rz is calculated by measuring the vertical distance from the highest peak to the lowest valley within five sampling lengths, then averaging these distances. Rz averages only the five highest peaks and the five deepest valleys—therefore extremes have a much greater influence on the final value.”- George Schuetz, Modern Machine Shop

RA Rz Swedev

“Ra is the arithmetical average value of all absolute distances of the roughness profile from the center line within the measuring length. Rz is the average maximum peak to valley of five consecutive sampling lengths within the measuring length.  Ra averages all measurements and does not have any discriminating value in separating rejects from acceptable cylinders.”- Swedev

And by the way the definition of Rz has also changed over the years. Which definition of Rz exactly is your customer using? How do you know?

You will find “Conversion Ratios” on the internet provided by well meaning people. But how useful can these be when the range said to be equivalent goes from 4:1, to 7:1 to 2-:1?

4:1 is equivalent to 20:1? Really? Not in my math class!

Smart shops will avoid using these “approximations in name only” and communicate with their customers to determine the customer’s true need. Gambling on conversion factors that you found on the internet is not professional, it is an example of poor engineering practice, and it fails to serve and protect your customer.

Don’t Do It!

Read this well written, not terribly mathematical treatment of the subject on MMSOnline

It’s a classic.

Authoritative standards : Surface finish measurement procedures, general terminology, definitions of most parameters and filtering information can be found in American Standard ASME B46.1 – 2009, Surface Texture, and in International Standards, ISO 4287 and ISO 4288.

PMPA National Technical Conference- Empowering Your Team

March 30, 2015

The National Technical Conference is one of PMPA’s most valued deliverables. Produced by members for members, this conference shares how- to‘s across the full range of our industry’s challenges- Operations, Management and Quality. Presenters are people that can (and do!) do the work:.

  • Building an Effective Training Program being presented by Shingo Silver Award winning shop experts Dan Vermeesch of Micron Manufacturing company and Dave Masereau of Boston Centerless.
  • Gary Griffith (our highest ranked presenter) is back with a great workshop on GD&T.
  • Diane Thielfoldt with more about our millennial workforce.

Plus sessions on Troubleshooting,  ISO 9001:2015 , Rapid Improvement Events, Finish Issues, Shop Floor Math, Innovating with CAM and CNC, Print and part review– to name just a few. This conference is truly packed with a host of opportunities for your team to bring back new ideas and  new capabilities to your shop.

Time is running out...

Time is running out…

The NTC runs from April 19-21 in Columbus, Ohio with the Precision Machining Technology Show (PMTS) immediately following the conference.

(Your registration to the NTC will automatically register you for PMTS.)

Sign Up Now for the National Technical Conference.

Want more info on programs offered?  Click this link to review over 30 sessions that are packed within this 2 ½ days of training.

Don’t miss your chance to upgrade the skills of your team and the capabilities of your shop.

Sign Up Now


Hourglass photo credit

Top 10 Facts About Leaded Steel Bars

March 18, 2015

Leaded steel bars historically have been a mainstay raw material in the screw machining industry. As more applications and newer technology move away to non leaded steel applications, we thought that a brief refresher about Lead and its role in our shops might be timely.

The 0.15- 0.35 weight percent of lead helps these bars machine 25% faster with less power required.

The 0.15- 0.35 weight percent of lead  contained in these bars helps them  machine 25% faster with less power required.

  1. Leaded steel bars are standard steels and widely available. In the U.S. 12L14 is the predominant grade. 11SMnPb30,  11SMnPb28, 9SMnpb28, and 9SMnPb36are German designations nominally equivalent to 12L14.The Chinese version of 12L14 is Y15Pb; Japanese nominal equivalents include SUM22L, SUM23L, andSUM24L.
  2. Leaded steels are selected for use for the savings achieved in producing parts by machining.
  3. Leaded steels are not appropriate for all parts– and parts with low amounts of stock removal may not create any noticeable savings.
  4. Today’s Leaded steels are more consistent, more uniform, than they were when produced by the ingot process.
  5. The decision to use Leaded Steels for a specific part must be based on the economics for that part– volume, stock removal, part complexity, tolerances required, surface finish needed are all factors that contribute to that economic calculation.
  6. There is no sacrifice in mechanical properties when adding lead to steel. neither longitudinal nor transvers mechanical properties are affected by the addition of lead to steel.
  7. Leaded steels are currently permitted under European Union Regulations covering End of Life Vehicles, RoHS.
  8. The reduction in energy required and time needed (about 25%!) to machine a part make leaded steels environmentally friendly by reducing Carbon Dioxide emissions to create parts compared to using unleaded materials.
  9. In order to be dangerous to humans, lead must be in a soluble form. The lead in steel bars is a separate solid phase. IARC lists lead under its Group 2B category – “possibly carcinogenic to humans”.
  10. Lead, as well as Chromium, Copper, Manganese, Nickel, and Phosphorous is required to be reported  under Sara 313 (40 CFR 372.65) when above thresholds.

Unknown Controls To Protect You- EPA and Ozone Overreach

March 17, 2015

“PMPA urges EPA to maintain the current 75ppb standards for ozone. Allowing for the full and continued implementation of the current law will continue to drive significant reduction in ozone emissions. The proposed rule fails to demonstrate benefits, relies on “unknown controls,” and fails to consider natural influences in ozone levels and attainment. “

The Precision Machined Products Association (PMPA) today filed official comments opposing the U.S. Environmental Protection Agency’s proposal to lower the National Ambient Air Quality Standards (NAAQs) for Ozone to as little as 65ppb. This reduced standard would place virtually the entire U.S. in nonattainment status, ignoring natural influences, restricting economic activity and manufacturing production.

A recent study showed the EPA’s latest proposal would lower U.S. GDP by $140 billion annually. At a 65ppb level, the entire state of Ohio falls into nonattainment status.

“The EPA needs to give the current standards a chance to work,” said Miles Free, co-Interim Executive Director of PMPA. “The White House delayed the rules twice for other considerations, I think they should consider the impact on manufacturing and stay with the current levels. Current rules have resulted in an 18% drop in ozone emissions between 2000 and 2013, with an additional 36 percent reduction on deck.”

Furthermore, over 60 percent of the controls and technologies needed to meet the rule’s requirements are “unknown controls,” according to EPA terminology. How are “unknown controls” a key step in attainment. How do “unknown controls” have credibility in Science based policy?

"Unknown controls" in science are like "Then a miracle happens' in Theology.

“Unknown controls” in science are like “Then a miracle happens’ in Theology.


Due to the “unknown control”status, the new regulation will likely result in the closure of plants and the early retirement of equipment used for manufacturing, construction and agriculture. In the precision machining industry, well-maintained equipment can last decades and small businesses like our members can ill afford to invest millions of dollars in new machines because of an EPA regulation.

It is not clear how EPA plans on curtailing manufacturing during bouts of seasonal nonattainment, regardless of whether the basis is natural or manmade causes.

However, should the EPA’s 65ppb standard take effect, virtually all PMPA members will find themselves in a nonattainment zone restricting their manufacturing activity.

Our shops can expect

  • Face EPA ordered restrictions on their production due to this rule
  • An EPA estimated 6-12% electricity price increase resulting from the existing power plant emissions regulation on their own operations;
  •  20% or more increase in cost of raw materials used in our shops that are produced by electrically intensive means such as electric arc furnaces (which are actually recycling steel scrap into new useful material)
  • Reduced hiring
  • Reduced creation of new plants
  • Reduced production and sales
  • Reduced U.S. GDP

EPA Ordered Restrictions?

“They could also mean reducing energy-intensive economic activity, which could have substantial impacts on regional and state economies. States or AQMDs that are unable to comply with the new standards on time would also face harsh economic sanctions, too. No new industrial activity could open in that state or AQMD unless the state or AQMD was first able to obtain even greater emission reductions elsewhere.”- source Pillsbury Law Blog

The EPA estimates of cost impacts are also low, as our suppliers are energy intensive and we will also face much higher raw material prices making us non-competitive globally.

Our members support sound environmental policies based on proven science and health benefits balanced with realistic economic expectations.

  • We do not believe that “unknown controls” rise to the level of mature thought let alone science basis.
  • We do not believe that EPA has shown that this proposal will have significant public health benefits over the current standards.
  • We do believe, that lowering the levels to 70ppb or 65ppb would have a significant negative economic impact on the entire country, especially small and medium sized manufacturers.

For these reasons, PMPA urges EPA to maintain the current 75ppb standards for ozone. Allowing for the full and continued implementation of the current law will continue to drive significant reduction in ozone emissions. The proposed rule fails to demonstrate benefits, relies on “unknown controls,” and fails to consider natural influences in ozone levels and attainment. As businessmen, we do not base our plans on “unknown controls.” We cannot see how smart policy can put the manufacturing sector and the overall economy at risk, by relying on unknown and unproven controls either.


Then a miracle happens cartoon by Sidney Harris via   TrulyFallacious

How Chemistry Determines Machinability- Manganese Sulfides

March 12, 2015

Flank wear is the “normally expected” failure mode for tools to fail when machining steels.

The volume fraction of Manganese Sulfides is a determinant of the tool’s wear rate. “The wear rate of high speed steel tools decreases rapidly up to about one percent volume fraction of MnS and then levels off to a constant wear rate as the volume fraction is increased.“-Roger Joseph and V.A.Tipnis, The Influence of Non-Metallic  Inclusions on the Machinability of Free- Machining Steels.

Manganese and Sulfur have a powerful effect in reducing flank wear on HSS tools

Manganese and Sulfur have a powerful effect in reducing flank wear on HSS tools

As sulfur rises beyond 1% volume fraction, surface finish improves, chips formed are smaller with less radius of curvature, and the friction force between cutting tool and chip decreases due to lower contact area.

Manganese sulfides are a separate internal phase.

Manganese sulfides are a separate internal phase.

How does Manganese Sulfide improve the machinability?

  • The MnS inclusions act as “stress raisers” in the shear zone to initiate microcracks that subsequently lead to fracture of the chip;
  • MnS inclusions  also deposit on the  wear surfaces of the cutting tool as “Built Up Edge (BUE).”
  • BUE reduces friction between the tool and the material being machined. This contributes to lower cutting temperatures.
  • BUE mechanically separates or insulates the tool edge from contact with work material and resulting heat transfer.

This is why resulfurized steels in the 11XX and 12XX series can be cut at much higher surface footage than steels with lower Manganese and Sulfur contents.

More info about Manganese in steel HERE


Get every new post delivered to your Inbox.

Join 91 other followers